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Abstract

The goal of this paper is twofold. We prove that the operator
H = L+ V , the perturbation of the Taibleson-Vladimirov multiplier
L = D� by the potential V (x) = b kxk�� ; b � b�; is essentially self-
adjoint and non-negative de�nite (the critical value b� depends on �
and will be speci�ed in the paper). While the operator H is non-
negative de�nite the potential V (x) may well take negative values,
e.g. b� < 0 for all 0 < � < 1. The equation Hu = v admiits a Green
function gH(x; y), the integral kernel of the operator H�1. We obtain
sharp lower- and upper bounds on the ratio of the functions gH(x; y)
and gL(x; y). Examples illustrate our exposition.
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1 Introduction

The spectral theory of nested fractals similar to the Sierpinski gasket, i.e. the
spectral theory of the corresponding Laplacians, is well understood. It has
several important features: Cantor-like structure of the essential spectrum
and, as result, the large number of spectral gaps, presence of in�nite number
of eigenvalues each of which has in�nite multiplicity and compactly supported
eigenstates, non-regularly varying heat kernels which contain oscilated in log t
scale terms etc, see P. J. Grabner and W. Woess [21], G. Derfel and P. J.
Grabner [16] and A. Bendikov, W. Cygan and W. Woess [8].
The spectral properties mentioned above occure in the very precise form

for the Taibleson-Vladimirov Laplacian D�, the operator of fractional deriv-
ative of order �. This operator can be introduced in several di¤erent forms,
say, as L2(Qp)-multiplier where Qp is the ring of p-adic numbers, see works
of M. H. Taibleson [39], V. S. Vladimirov, I. V. Volovich, E. I. Zelenov and
A. N. Kochubey resp. [40]), [41], [26]. The operator D� is unitary equivalent
to a hypersingular integral operator L acting in L2(0;+1),

Lf(x) =

1Z
0

(f(x)� f(y)) J(x; y)dy; (1.1)

the kernel J(x; y) will be speci�ed in this section. We refere to the articles
A. Bendikov [3], A. Bendikov and P. Krupski [6], and S. V. Kosyrev [27]. See
also related articles F. J. Dyson [17], S. A. Molchanov [35], [34], A. Bendikov,
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A. Grigor�yan, S. A. Molchanov, G. P. Samorodnitsky and W. Woess [4], [5],
and [7].
Let us brie�y outline the construction of the operator L. The equivalence

D� ' L will follow from the fact that D� and L are essentially self-adjoint
operators having pure point spectrums each of which consists of eigenvalues
of in�nite multiplicity and 0 as unique limit point, as subsets of [0;+1)
spectrums coinside.

The ultrametric space Let us �x an integer p � 2 and consider the family
of partitions f�r : r 2 Zg of the set X = [0;+1) such that each �r consists
of all p-adic intervals I = [kpr; (k+1)pr). We call r the rank of the partition
�r (respectively, the rank of the interval I 2 �r). Each interval of rank r is
the union of p disjoint intervals of rank (r�1). Each point x 2 X belongs to
a certain interval Ir(x) of rank r, and the intersection of all intervals Ir(x);
r 2 Z, is fxg:
The hierarchical distance d(x; y) is de�ned as zero if x = y and as the

length l(I) of the minimal p-adic interval I which contains x and y. Since any
two points x 6= y belong to a certain p-adic interval, d(x; y) < 1. Clearly
d(x; y) = 0 if and only if x = y, and d(x; y) = d(y; x). Moreover, for arbitrary
x; y and z holds the ultrametric inequality (which is stronger than the triangle
inequality)

d(x; y) � maxfd(x; z); d(z; y)g: (1.2)

The ultrametric space (X; d) is complete, separable and proper metric space.
In (X; d) the set of all open balls is countable and coincides with the set of
all p-adic intervals (!). In particular, any two balls either do not intersect or
one is a subset of another. Thus (X; d) is a totally disconnected separable
topological space.
The Borel �-algebra generated by the ultrametric balls coincides with the

Borel �-algebra generated by the Eucledian balls.
As it follows from a general theorem due to M. Del Muto and A. Figà-

Talamanca [15, Section 2] the metric space (X; d) is isometrically isomorphic
to the ring of p-adic numbers Qp.

The hierarchical Laplacian Let D be the set of all compactly supported
locally constant functions. Let � 2]0; 1[ be a �xed parameter. The hierar-
chical Laplacian L is introduced as a sum of (minus) Markov generators Lr
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of pure jump processes 1

(Lf)(x) =

+1X
r=�1

(1� �)�r�1

0B@f(x)� 1

l(Ir(x))

Z
Ir(x)

fdl

1CA
| {z }

(Lrf)(x)

: (1.3)

The series in (1.3) diverges in general but it is �nite and belongs to all spaces
Lp(0;1); p � 1; for any function f 2 D.
As each "elementary" Laplacian Lr can be written in the form

Lrf(x) =

1Z
0

(f(x)� f(y)) Jr(x; y)dy;

Jr(x; y)dy = (1� �)�r�1| {z }
�r(x)

� 1Ir(x)(y)=l(Ir(x))dy| {z }
Ur(x;dy)

;

the operator L coincides with a hypersingular integral operator

Lf(x) =

1Z
0

(f(x)� f(y)) J(x; y)dy;

J(x; y) =
��1 � 1
1� �p�1

� 1

d(x; y)1+�
; � = � log �

log p
:

The operator L admits a complete system of compactly supported eigen-
functions. Indeed, let I be a p-adic interval of rank r, and I1; I2; :::; Ip be its
p-adic subintervals of rank r � 1. Let us consider p functions

 Ii =
1Ii
l(Ii)

� 1I
l(I)

:

Each function  Ii belongs to D and satis�es

L Ii = �r�1 Ii.

1A Markov process fX(t); Pxg is called a pure jump process if, starting from any point
x; it has all sample paths constant except for isolated jumps, and right-continuous.
The basic data which de�nes the process are (i) a function 0 < �(x) < 1, and (ii) a

Markov kernel U(x; dy) satisfying U(x; fxg) = 0. Intuitively a particle starting from x
remains there for an exponentialy distributed time with parameter �(x) at which time it
"jumps" to a new position x0 according to distribution U(x; �) etc.
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When I runs over the set of all p-adic intervals the set of eigenfunctions  Ii
is complete in L2(0;1). In particular, L is essentially self-adjoint operator
having a pure point spectrum

Spec(L) = f0g [ f�r : r 2 Zg:

Each eigenvalue �r has in�nite multiplicity. In particular, the spectrum of
L coincides with its essential part. Clearly writing � = p�� the operator L
can be identi�ed with the Taibleson-Vladimirov operator D�, the operator
of fractional derivative of order � acting on L2(Qp)

D� (x) = � 1

�p(��)

Z
Qp

 (x)�  (y)

kx� yk1+�p

dm(y):

Towards the general theory There are already several publications on
the spectrum of the hierarchical Laplacian acting on a general ultrametric
measure space (X; d;m), see S. Albeverio and W. Karwowski [2], M. Aisen-
man and S. A. Molchanov [1], [35], [34], A. Bendikov, A. Grigor�yan, P.
Krupski, S.A. Molchanov, Ch. Pittet and W. Woess resp. [4], [5], [6], [7].
Accordingly, the hierarchical Schrödinger-type operator, the subject of the
present work, was studied in F. J. Dyson [18], S. A. Molchanov, B. Vainberg
[35], [36], [37], A. Bovier [13], E. Kritchevski [30], [31], [32] (the hierarchical
lattice of Dyson) and in V. S. Vladimirov, I. V. Volovich, E. I. Zelenov and
A. N. Kochuvey resp. [42], [41], [26] (the �eld of p-adic numbers).
By the general theory developed in A. Bendikov, A. Grigor�yan, P. Krup-

ski, Ch. Pittet and W. Woess resp. [4], [5] and [6], any hierarchical Laplacian
L acts in L2(X;m); is essentially self-adjoint non-negative de�nite operator.
It can be represented as a hypersingular integral operator

Lf(x) =

Z
X

(f(x)� f(y))J(x; y)dm(y). (1.4)

Respectively, the quadratic form QL(u; u) := (L
1=2u; L1=2u)L2(X;m) is a regu-

lar Dirichlet form having representation

QL(u; u) =
1

2

Z
X�X

(f(x)� f(y))2J(x; y)dm(x)dm(y): (1.5)

The operator L has a pure point spectrum, its Markovian semigroup (e�tL)t>0
admits with respect to m a continuous transition density p(t; x; y). In terms
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of certain (intrinsically related to L) ultrametric d�(x; y) the functions J(x; y)
and p(t; x; y) can be represented in the form

J(x; y) =

1=d�(x;y)Z
0

N(x; �)d� , (1.6)

p(t; x; y) = t

1=d�(x;y)Z
0

N(x; �) exp(�t�)d�: (1.7)

The function N(x; �), the so called Spectral function, will be speci�ed in the
next section.

Outline Let us describe the main body of the paper. In Section 2 we in-
troduce the notion of homogeneous hierarchical Laplacian L and list its basic
properties e.g. the spectrum of the operator L is pure point, all eigenvalues of
L have in�nite multiplicity and compactly supported eigenfunctions, the heat
kernel p(t; x; y) exists and is a continuous function having certain asymptotic
properties etc. For the basic facts related to the ultrametric analysis of heat
kernels listed here we refere to A. Bendikov, A. Grigor�yan, P. Krupski, Ch.
Pittet and W. Woess [4], [5], [6].
As a special example we consider the case X = Qp; the ring of p-adic

numbers endowed with its standard ultrametric d(x; y) = kx� ykp and the
normed Haar measure m. The hierarchical Laplacian L in our example coin-
cides with the Taibleson-Vladimirov operator D�, the operator of fractional
derivative of order �, see V. S. Vladimirov, I. V. Volovich, E. I. Zelenov and
A. N. Kochuvey resp. [40], [42], and [26]. The most complete sourse for the
basic de�nitions and facts related to the p-adic analysis is N. Koblitz [25]
and M. H. Taibleson [39].
In the next section we consider the Schrödinger-type operatorH = D�+V

with potential V 2 L1loc having local singularity, e.g. V (x) = b kxk��p , 0 <
� < 1. The main aim here is to prove that under certain conditions on V
the quadratic form

Q(u; u) := QD�(u; u) +QV (u; u)

where

QD�(u; u) =

Z ��D�=2u
��2 dm; QV (u; u) = Z juj2 V dm

is semibounded and whence de�nes a self-adjoint operator H. Under certain
conditions on V we will prove that D, the set of locally constant compactly
supported functions, is indeed a form core for Q(u; u).
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We also prove several results about the negative part of the spectrum of
H. For instance, if V 2 Lp for some p > 1=�, then the operator H has
essential spectrum equals to the spectrum of D�. In particular, if H has any
negative spectrum, then it consists of a sequence of negative eigenvalues of
�nite multiplicity. If this sequence is in�nite then it converges to zero.
In the concluding section we consider the operator H = D� + b kxk��p

assuming that 0 < � < 1 and b � b�, the critical value which will be speci�ed
later. We will prove that the equation Hu = v admits a fundamenthal solu-
tion gH(x; y) (the Green function of the operator H). The function gH(x; y)
is continuous and takes �nite values o¤ the diagonal. Let gD�(x; y) be the
Green function of the operator D�. The main result of this section is the
following statement: for any b � b� there exists ��1

2
� � < � such that

gH(x; y)

gD�(x; y)
�
 
kxkp
kykp

^
kykp
kxkp

!�
;

where the sign � means that the ratio of the left- and right hand sides is
bounded from below and above by positive constants. This result must be
compared with the Green function estimates for Schrödinger operators on
complete Riemanian manifolds, see A. Grigor�yan [22].

2 Preliminaries

2.1 Homogeneous ultrametric space

Let (X; d) be a locally compact and separable ultrametric space. Recall that
a metric d is called a ultrametric if it satis�es the ultrametric inequality

d(x; y) � maxfd(x; z); d(z; y)g; (2.1)

that is stronger than the usual triangle inequality. The basic consequence
of the ultrametric property is that each open ball is a closed set. Moreover,
each point x of a ball B can be regarded as its center, any two balls A and
B either do not intersect or one is a subset of another etc. In particular,
the ultrametric space (X; d) is totally disconnected, see A. Bendikov and
P. Krupski [6] and references therein. In this paper we assume that the
ultrametric space (X; d) is proper, that is, each closed ball is a compact set.
To any ultrametric space (X; d) one can associate in a standard fashion

a tree T : The vertices of the tree are metric balls, the boundary @T can be
identi�ed with the one-point compacti�cation X [ f$g of X: We refere to
A. Bendikov and P. Krupski [6] for a treatment of the association between
an ultrametric space and the tree of its metric balls.
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De�nition 2.1 An ultrametric measure space (X; d;m) is called homoge-
neous if the group of its isometries acts transitively and preserves the mea-
sure.

The following remarkable result is due to M. Del Muto and A. Figà-
Talamanca [15, Section 2].

Theorem 2.2 Any homogeneous ultrametric measure space (X; d;m) can
be identi�ed with certain locally compact Abelian group G equipped with a
translation invariant ultrametric d and the Haar measure m.

For example, the setX = [0;+1[ equipped with the ultrametric structure
generated by p-adic intervals can be identi�ed with Qp, the ring of p-adic
numbers.
The identi�cation in Theorem 2.2 is not unique. One possible way to

de�ne such identi�cation is to choose the sequence a = fang of forward
degrees associated with the tree of balls T . This sequence is two-sided if X
is non-compact and perfect (has no isolated points), it is one-sided if X is
compact and perfect, or if X is discrete. In the 1st case we identify X with

a, the ring of a-adic numbers, in the 2nd case with �a � 
a, the ring of
a-adic integers, and in the 3rd case with the discrete group [
a : �a]. We
refer the reader to the monograph E. Hewitt and K. A. Ross [23] for the
comprehensive treatment of special groups 
a, �a and [
a : �a].

2.2 Homogeneous hierarchical Laplacian

Let (X; d;m) be a non-compact homogeneous ultrametric measure space.
Let B be the set of all open balls, B(x) � B the set of balls centred at x, and
C : B ! (0;1) a function satisfying the following conditions:

(i) C(A) = C(B) for any two balls A and B of the same diameter,

(ii) �(B) :=
P

T2B: B�T
C(T ) <1 for all B 2 B,

(iii) supB2B(x) �(B) =1 for any non-isolated x.

The class of functions C(B) satisfying these conditions is reach enough,
e.g. one can choose

C(B) = (1=m(B))� � (1=m(B0))�

for any two closest neighboring balls B � B0. In this case �(B) = (1=m(B))�:
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The homogeneous hierarchical Laplacian L is de�ned (pointwise) as

Lf(x) :=
X

B2B(x)

C(B)

0@f(x)� 1

m(B)

Z
B

fdm

1A . (2.2)

In general, the series in (2.2) diverges but for f 2 D, the set of all lo-
cally constant compactly supported functions, it converges in Banach spaces
Lp(X;m), 1 � p <1, and in C1(X).
Let us choose any two closest neighboring balls B � B0 and set

fB =
1B
m(B)

� 1B0

m(B0)
: (2.3)

Then clearly fB 2 D and one can check that

LfB(x) = �(B0)fB(x): (2.4)

As the couple B � B0 runs over all nearest neighboring balls in B the system
ffB : B 2 Bg is complete. In particular, we conclude that L : D ! L2(X;m)
is an essentially self-adjoint operator.
The intrinsic ultrametric d�(x; y) associated wth L is de�ned as follows

d�(x; y) :=

�
0 when x = y

1=�(xf y) when x 6= y
; (2.5)

where x f y is the minimal ball containing both x and y. In particular, for
any non-singletone ball B we have

�(B) =
1

diam�(B)
: (2.6)

The spectral function � ! N(�); see equation (1.6), is de�ned as the left-
continuous step-function having jumps at the points �(B), and taking values

N(�(B)) = 1=m(B):

The volume function V (r) is de�ned by setting V (r) = m(B) where the ball
B has d�-radius r. It is easy to see that

N(�) = 1=V (1=�): (2.7)

The Markovian semigroup Pt = e�tL; t > 0; admits a continuous density
p(t; x; y) w.r.t. m, we call it the heat kernel. The function p(t; x; y) can be
represented in the form (1.7).
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For � > 0 the Markovian resolvent G� = (� + L)�1 admits a continuous
strictly positive integral kernel g(�; x; y). The operator G� is well de�ned
for � = 0 (i.e. the Markovian semigroup (Pt)t>0 is transient) if and only
if for some (equivalently, for all) x 2 X the volume function � ! 1=V (�)
is integrable at 1. The integral kernel g(x; y) := g(0; x; y), called also the
Green function, is of the form

g(x; y) =

+1Z
r

d�

V (�)
; r = d�(x; y): (2.8)

Under certain Tauberian conditions it takes the form

g(x; y) � r

V (r)
; r = d�(x; y): (2.9)

2.3 Subordination

Let � : R+ ! R+ be an increasing homeomorphism. For any two nearest
neighbouring balls B � B0 we de�ne

C(B) = � (1=m(B))� � (1=m(B0)) : (2.10)

Let L� be the corresponding to C(B) hierarchical Laplacian.The following
properties hold true:

(i) �(B) = � (1=m(B)). In particular, the Laplacians L� and LId are related
by the equation L� = �(LId). 2

(ii) d�(x; y) = 1=� (1=m(xf y)).

(iii) V (r) � 1=��1(1=r):

(iv) V (r) � 1=��1(1=r) whenever both � and ��1 are doubling and the
inequality m(B0) � Cm(B) holds for some C > 0 and all nearest
neighboring balls B � B0. In particular, in this case we have

p�(t; x; y) � t �min
�
1

t
��1

�
1

t

�
;

1

m(xf y)�
�

1

m(xf y)

��
:

2In the case �(�) is a Bernstein function the association L� = �(LId) has been studied
in the well-known Bochner�s subordination theory W. Feller [19].
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2.4 Multipliers

As a special case of the general construction consider X = Qp, the ring of p-
adic numbers equipped with its standard ultrametric d(x; y) = kx� ykp. No-
tice that the ultrametric spaces (Qp; d) and ([0;1); d) with non-eucledian d;
as explained in the introduction, are isometrically isomorphic (the isometry
can be established via identi�cation of their trees of metric balls).
Let F : f ! bf be the Fourier transform of the function f . It is known,

see M. H. Taibleson [39], V. S. Vladimirov, A. N. Kochubei [42], [26], that
F : D ! D is a bijection.
Let � : R+ ! R+ be an increasing homeomorphism. The self-adjoint

operator �(D) we de�ne as multiplier, that is,

\�(D)f(�) = �(k�kp) bf(�); � 2 Qp: (2.11)

By A. Bendikov, A. Grigor�yan, Ch. Pittet and W. Woess [5, Theorem 3.1],
�(D) is a homogeneous hierarchical Laplacian. The eigenvalues �(B) of the
operator �(D) are numbers

�(B) = �

�
p

m(B)

�
= �

�
p

diam(B)

�
: (2.12)

Let p�(t; x; y) be the heat kernel associated with the operator �(D): Assum-
ing that both � and ��1 are doubling we get the following relationship

p�(t; x; y) � t �min
(
1

t
��1

�
1

t

�
;

1

kx� ykp
�

 
1

kx� ykp

!)
: (2.13)

The Taibleson-Vladimirov operator D� introduced in M. H. Taibleson [39]
and V. S. Vladimirov [42] is the multiplier corresponding to the function
�(�) = �� . On the set D it can be represented in the form

D� (x) = � 1

�p(��)

Z
Qp

 (x)�  (y)

kx� yk1+�p

dm(y); (2.14)

where �p(z) = (1 � pz�1)(1 � p�z)�1 is the p-adic Gamma-function V. S.
Vladimirov [42, Sec.VIII.2 ]. The function z ! �p(z) is meromorphic in the
complex plane C and satis�es the functional equation �p(z)�p(1� z) = 1:
By what we said above the heat kernel p�(t; x; y); the transition density

of the Markovian semigroup (e�tD
�
)t>0, can be estimated as follows

p�(t; x; y) �
t

(t1=� + kx� ykp)1+�
; (2.15)
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In particular, the Markov semigroup (e�tD
�
)t>0 is transient if and only if

� < 1. In the transient case the Green function g�(x; y) can be computed
explicitly

g�(x; y) =
1

�p(�)

1

kx� yk1��p

: (2.16)

For all facts listed above we refer the reader to A. Bendikov, A. Grigor�yan,
P. Krupski, Ch. Pittet and W. Woess [4], [5] and [6].

2.5 The symbol of the hierarchical Laplacian

Identifying X with a locally compact Abelian group we can regard �L as an
isotropic Lévy generator. By (1.4), the operator L on D takes the form

Lf(x) =

Z
X

(f(x)� f(y))J(x� y)dm(y); (2.17)

or equivalently, in terms of the Fourier transform,

cLf(�) = bL(�) � bf(�); � 2 bX; (2.18)

where bX is the dual Abelian group (e.g. cQp can be identi�ed with Qp) and
bL(�) = Z

X

[1� Re hh; �i]J(h)dm(h): (2.19)

The function bL(�) � 0, the symbol of the Lévy generator �L, is a continuous
negative de�nite function Ch. Berg and G. Forst [11]. In particular, the

function
qbL(�) is subadditive. By the subordination property A. Bendikov,

A. Grigor�yan, Ch. Pittet and W. Woess [5, Theorem 3.1], the function bL(�)2
is the symbol of symmetric Lévy generator �L2, so the function bL(�) =qbL(�)2 is subadditive as well, i.e. it satis�es the triangle inequality

bL(�1 + �2) � bL(�1) + bL(�2): (2.20)

Since �L is an isotropic Lévy generator [5, Sec. 5.2 ] , a stronger property
holds true

Theorem 2.3 The function bL(�) satis�es the ultrametric inequality
bL(�1 + �2) � maxfbL(�1); bL(�2)g: (2.21)
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Proof. In order to simplify notation we assume that X = Qp, the ring of
p-adic numbers. Let B � B0 be two nearest neighboring balls centred at the
neutral element. Notice that both B and B0 are compact subgroups of the
group Qp, say B = p�kZp and B0 = p�k�1Zp. Applying the Fourier transform
to the both sides of equation (2.4) we getbL(�)cfB(�) = �(B0)cfB(�): (2.22)

The measure !B = (1Bm)=m(B) is the normalized Haar measure of the
compact subgroupB, similarly for !B0. Since for any locally compact Abelian
group, the Fourier transform of the normalized Haar measure of any compact
subgroup A is the indicator of its annihilator group A?, and in our particular
case B? = pkZp and (B0)? = pk+1Zp, we obtaincfB(�) = 1B?(�)� 1(B0)?(�) = 1@B?(�); (2.23)

where @B? is the sphere B? n (B0)?.
Equations (2.23) and (2.4) imply that the function bL(�) takes constant

value �(B0) on the sphere @B?, i.e. bL(�) =  (k�kp) for some function  (�)
such that  (0) = 0 and  (+1) = +1: Since C � D implies �(C) > �(D),
the function  (�) can be chosen to be continuous and increasing, so bL(�) =
 (k�kp) satis�es the ultrametric inequality (2.21) as claimed.

3 Schrödinger-type operators

Let (X; d;m) be a homogeneous ultrametric measure space and L a homo-
geneous hierarchical Laplacian on it. In this section we embark on the study
of Schrödinger-type operators

Hf(x) = Lf(x) + V (x)f(x):

Our goal is to �nd conditions such that one can associate with the equation
above a self-adjoint operator H acting in L2(X;m).

3.1 Locally bounded potentials

If we assume that the potential V is a locally bounded function then

(Hu)(x) := (Lu)(x) + V (x)u(x)

is a well de�ned symmetric operator H : D ! L2(X;m). For the proof of
the following theorem we refer to the paper A. Bendikov, A. Grigor�yan and
S. A. Molchanov [9, Theorem 3.1]
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Theorem 3.1 Assume that V is a locally bounded function, then
1. The operator H is essentially self-adjoint.
2. If V (x) ! +1 as x ! $, then the self-adjoint operator H has a

compact resolvent. (Thus, its spectrum is discrete).
3. If V (x)! 0 as x! $, then the essential spectrum of H coincides with

the spectrum of L. (Thus, the spectrum of H is pure point and the negative
part of the spectrum consists of isolated eigenvalues of �nite multiplicity).

Remark 3.2 For the classical Schrödinger operator H = ��+V de�ned on
the set of compactly supported smooth functions the statement similar to the
statement 1 of Theorem 3.1 is known as the Sears�s theorem: H is essentially
self-adjoint if the potential V admits a low bound

V (x) � �Q(jxj);

where Q(r) > 0 is a continuous non-decreasing function such thatZ 1

0

Q(r)�1=2dr =1;

and H may fail to be essentially self-adjoint otherwise, see F. A. Beresin and
M. A. Shubin [10, Chapter II, Theorem 1.1 and Example 1.1].

3.2 Potentials with local singularities

If we are interested in potentials with local singularities, such as V (x) =
b kxk��p , b 2 R, then certain local conditions on the potential V are necessary
in order to prove that the quadratic form

Q(u; u) := QL(u; u) +QV (u; u); (3.1)

de�ned on the set

dom(Q) := dom(QL) \ dom(QV )

is a densly de�ned closed and bounded below quadratic form and whence it is
associated to a bounded below self-adjoint operator H, see E. B. Davies [14,
Section 4.4]. It is customary to write H = L+V , but it must be remembered
that this is a quadratic form sum and not an operator sum as in the previous
subsection.

Theorem 3.3 If 0 � V 2 L1loc(X;m), then the quadratic form (3.1) is a
regular Dirichlet form. In particular, it is the form of a non-negative self-
adjoint operator H,

Q(u; u) = (H1=2u;H1=2u)

and the set D is a core for Q.

14



Proof. The set D belongs to both dom(QL) and dom(QV ) hence Q is densly
de�ned. Set V� = V ^ � and de�ne on the set dom(QL) the form

Q� (u; u) = QL(u; u) +QV� (u; u):

Since V� is bounded the form Q� is closed. In particular, the function u !
Q� (u; u) is lower semicontinuous. It follows that the function u! Q(u; u) =
supfQ� (u; u) : � > 0g is lower semicontinuous as well. Hence by [14, Theorem
4.4.2] the form Q is closed, and thus it is the form of a non-negative de�nite
self-adjoint operator H. Clearly the form Q is Markovian, i.e. the normal
contraction operates on (Q;F) where F = dom(Q). Thus Q is a Dirichlet
form. Let us show that D is a core for Q, i.e. that Q is a regular Dirichlet
form, see M. Fukushima [20].
Step 1 For u 2 dom(Q) we set un = ((�n) _ u) ^ n, then un 2 dom(Q)

and Q(u�un; u�un)! 0, see M. Fukushima [20, Theorem 1.4.2]. Therefore
the set of bounded functions in dom(Q) is a core for Q:
Step 2 Let B be a ball centred at the neutral element. Let u 2 dom(QL)

be bounded and uB = 1B � u. The function 1B is in D � dom(QL), whence
applying M. Fukushima [20, Theorem 1.4.2] we get: uB 2 dom(QL) andp

QL(uB; uB) �
p
QL(u; u) + kuk1 �

p
QL(1B; 1B):

3

The following auxiliary result is of its own interest: Let B0 � B be the closest
neighboring balls and �(B0) the eigenvalue of L corresponding to the ball B0,
see equations (2.3) and (2.4), then

1

2
m(B)�(B0) < QL(1B; 1B) < 2m(B)�(B

0): (3.2)

Indeed, to prove inequality (3.2) we write

1B
m(B)

=
X

T2B: B�T
fT

where the series converges in L2(X;m). As �(C) < �(D) for any two balls
C � D the series below converges in L2(X;m) (and also in uniform metric)

L1B = m(B)
X

T2B: B�T
LfT = m(B)

X
T2B: B�T

�(T 0)fT :

3In the classical potential theory L = �� and QL(u; u) = 1
2

R
jruj2 dm whence

QL(1B ; 1B) = 0 and the following contraction property holds QL(uB ; uB) � QL(u; u).
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Hence 1B 2 dom(L) and the following equation holds true

QL(1B; 1B) = (L1B; 1B) = m(B)2
X

T2B: B�T
�(T 0) kfTk2

= m(B)2
X

T2B: B�T
�(T 0)

�
1

m(T )
� 1

m(T 0)

�
:

In turn, the above identity yield the desired inequalities

QL(1B; 1B) > m(B)�(B0)

�
1� m(B)

m(B0)

�
� 1

2
m(B)�(B0)

and

QL(1B; 1B) < m(B)�(B0)
X

T2B: B�T

m(B)

m(T )
� 2m(B)�(B0)

as it was claimed. In particular, if we assume that

lim
B%X

m(B)�(B0) = 0 (3.3)

(as it happens in the case of the operator L = D�; � > 1) then

lim sup
B%X

QL(uB; uB) � QL(u; u): (3.4)

On the other hand, applying equation (1.5) and the Fatou�s lemma we get

lim inf
B%X

QL(uB; uB) � QL(u; u): (3.5)

Thus, assuming that (3.3) holds, we obtain

lim
B%X

QL(uB; uB) = QL(u; u): (3.6)

By the Lebesgue�s convergence theorem,

lim
B%X

QV (uB; uB) = QV (u; u): (3.7)

Hence applying (3.6) and (3.7) we get

lim
B%X

Q(uB; uB) = Q(u; u): (3.8)

Step 3 Let (R�)�>0 be the Markov resolvent corresponding to Q. Let
Q1(f; g) := Q(f; g) + (f; g). Then for any function v 2 L2(X;m) by the
Lebesgue�s convergence theorem

Q1(uB; R1v) = (uB; v)! (u; v) = Q1(u;R1v)
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Since R1(L2(X;m)) is a dense set in the Hilbert space (F ; k�k�), where
F = dom(Q) and kuk� =

p
Q1(u; u), the sequence uB converges weakly

in (F ; k�k�) to u, i.e.

Q1(uB; w)! Q1(u;w); 8w 2 dom(Q): (3.9)

Using equations (3.8) and (3.9) we obtain:

lim
B%X

Q1(u� uB; u� uB) = lim
B%X

(Q1(u; u)� 2Q1(uB; u) +Q1(uB; uB))

= Q1(u; u)� 2 lim
B%X

Q1(uB; u) + lim
B%X

Q1(uB; uB)

= Q1(u; u)� 2Q1(u; u) +Q1(u; u) = 0:

Thus, if condition (3.8) holds, the set of bounded functions with compact
support in dom(Q) is a core for Q as desired.
Step 4 In order to prove property (3.8) without any limitation on the

spectrum of L we are forced to apply the Fourier transform argument and the
metric properties of the symbol bL(�) of the operator L. To simplify notation
we assume that X = Qp so that bX = Qp.
Any ball B centred at the neutral element is a compact subgroup of X.

Since the Fourier transform of the normalized Haar measure of a compact
subgroup is the indicator of its annihilator group, we obtain

QL(uB; uB) =

Z
bX bL(�) jcuB(�)j2 dbm(�)

=

Z
bX bL(�) jbu � bmB?(�)j2 dbm(�);

where B? is the annihilator group of the compact subgroup B � X andbmB? is the normed Haar measure of B?: Having this in mind and using the
inequality

jbu � bmB?j2 � jbuj2 � bmB?

we get

QL(uB; uB) �
Z
bX bL(�) �jbuj2 � bmB?

�
(�)dbm(�)

=

Z
bX bL(�)

�Z
B?
jbu(� + �)j2 dbmB?(�)

�
dbm(�)

=

Z
B?

�Z
bX bL(� + �) jbu(�)j2 dbm(�)� dbmB?(�):
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By Theorem 2.3 bL(�) =  (k�kp); where  (�) is an increasing continuous
function. It follows that � ! bL(�) satis�es the ultrametric inequality (2.21),
and therefore

QL(uB; uB) �
Z
B?

�Z
bX max

nbL(�); bL(�)o jbu(�)j2 dbm(�)� dbmB?(�)

�
Z
B?

�Z
bX
�bL(�) + bL(�)� jbu(�)j2 dbm(�)� dbmB?(�):

As bmB?(1) = 1 all the above yield the following inequality

QL(uB; uB) � QL(u; u) +

�Z
B?

bL(�)dbmB?(�)

�
kuk2 :

When B % X the measure bmB? converges weakly to the Dirac measure
concentrated at the neutral element. As bL(0) = 0 we �nally get

lim sup
B%X

QL(uB; uB) � QL(u; u): (3.10)

Evidently (3.10), (3.5) and (3.7) yield the equation

lim
B%X

Q(uB; uB) = Q(u; u)

which holds without any restriction on the spectrum of the operator L. Thus,
as in Step 3, we come to conclusion that the set of bounded compactly
supported functions in dom(Q) is a core for Q as desired.
Step 5 Let now u 2 dom(Q) be bounded and has a compact support. Let

B be a ball centred at the neutral element of X (recall that B is a compact
subgroup of X) and mB be its normed Haar measure. We set uB = u �mB.
The function uB is locally constant and has a compact support, hence it
belongs to D � dom(Q). We have cuB = bu � 1B? whence

lim
B!feg

u� uB
2
2
= lim

B?! bX
Z

(B?)c

jbu(�)j2 dbm(�) = 0; (3.11)

similarly

lim
B!feg

QL(u� uB; u� uB) = lim
B?! bX

Z
(B?)c

bL(�) jbu(�)j2 dbm(�) = 0: (3.12)
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There exists a compact set K which contains the support of every function
u � uB provided diam(B) � 1. Given " > 0 there exists a decomposition
V jK = V1 + V2 such that kV1k1 < " and V2 2 L1(X;m). It follows that

QV (u� uB; u� uB) =

Z
K

V
��u� uB

��2 dm
=

Z
K

V1
��u� uB

��2 dm+ Z
K

V2
��u� uB

��2 dm
� 4" kuk21 + kV2k1

u� uB
2
2

whence
lim sup
B!feg

QV (u� uB; u� uB) � 4" kuk21 : (3.13)

Clearly equations (3.11), (3.12) and (3.13) yield the desired result

lim
B!feg

Q1(u� uB; u� uB) = 0;

i.e. D is indeed a core for Q = QL +QV .

Remark 3.4 It is clear that Theorem 3.3 can be extended for those V which
are bounded below and in L1loc(X;m) by simply adding a large enough positive
constant. If, however, we are interested in V with negative local singularities,
then stronger local conditions on V are necessary in order to be able to prove
that the form Q is closed.

De�nition 3.5 Let p � 1 be �xed. We say that a potential V lies in Lp+L1
if one can write V = V 0 + V 00where V 0 2 Lp(X;m) and V 00 2 L1(X;m) .
This decomposition is not unique, and, if it is possible at all, then one can
arrange for kV 0kp to be as small as one chooses.

Theorem 3.6 ConsiderX = Qp; m - the Haar measure, L = D : Lp(X;m)!
Lp(X;m), and let Q = QL+QV be quadratic form (3.1) where V 2 Lp(X;m)+
L1(X;m) for some p > 1=. Then:
1. Q is a densly de�ned closed and bounded below form whence it is

associated with a bounded below self-adjoint operator H.
2. If 2 � 1= < p then dom(H) = dom(D). The same is true if 1= < 2

and p = 2 .

Proof. The set D belongs to both dom(QL) and dom(QV ) whence Q is
densly de�ned. Given " > 0 we may write jV j = W +W 0 where kWkp < "
and W 0 2 L1(X;m). We claim that if " > 0 is su¢ ciently small, thenW 1=2u

2
2
� 1

2
QL(u; u) + c0 kuk22 (3.14)
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for some constant c0 > 0 and all u 2 dom(QL).
Clearly inequality 3.14 yield thatZ

jV j juj2 dm �
W 1=2u

2
2
+ kW 0k1 kuk

2
2

� 1

2
QL(u; u) + c1 kuk22

for some constant c1 > 0 and all u 2 dom(QL). Thus for c2 > 2c1 we get
1

2

�
QL(u; u) + c2 kuk22

	
� Q(u; u) + c2 kuk22 �

3

2

�
QL(u; u) + c2 kuk22

	
:

It follows that the quadratic form u ! Q(u; u) + c2 kuk22 is non-negative
and closed whence it is associated with a non-negative self-adjoint operator,
which is clearly equal to H + c2I.
To prove the inequality 3.14 we need some auxiliary Lp-estimates which

are of their own interest.

E1. If 0 < � � 1=(2) and 2 � p < 2=(1�2�), then (D+I)�� is a bounded
linear operator from L2(X;m) to Lp(X;m). If � > 1=(2), then (D +
I)�� is a bounded linear operator from L2(X;m) to L1(X;m).

E2. If 0 < � � 1=(2) and W 2 Lq(X;m), then A : =W � (D + �I)��

is a bounded linear operator on L2(X;m) provided 1=(�) < q � 1.
Moreover, there exists a constant c > 0 such that kAkL2!L2 � c kWkq
for all such W. The same bound holds in the case � > 1=(2) and
q = 2. In both cases the operator A is a compact operator on L2.
Moreover, lim�!1 kW � (D + �I)��kL2!L2 = 0.

Proof of statement (E1). Assume �rst that 0 < � � 1=(2). If we de�ne
the function g(y) := (kykp + 1)�� and assume that 1=(�) < s <1 then

kgkss =
Z
Qp

dm(y)

(kykp + 1)�s
=

�
1� 1

p

� 1X
�=�1

p�

(p� + 1)�s
<1:

If k = \(D + I)��f and f 2 L2, then k(y) = g(y) bf(y). Putting 1=q =
1=s+ 1=2, 1=(�) < s � 1, we deduce that 1 < q � 2 and

kkkq � kgks
 bf

2
= c1 kfk2 :

If 1=p+1=q = 1, then 2 � p <1 and, as it follows from the Hausdor¤-Young
theorem, (D + I)��f


p
=
bk

p
� kkkq � c1 kfk2 :
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We have 1=p = 1�1=q = 1=2�1=s and 1=(�) < s � 1, whence p increases
from 2 to 2=(1� 2�) as s decreases from 1 to 1=(�).
If � > 1=(2), then the function g de�ned above lies in L2 and we deduce

that
kkk1 =

g bf
1
� kgk2

 bf
2
= c2 kfk2

whence as above(D + I)��f

1 =

bk
1
� kkk1 � c2 kfk2

as desired.
Proof of the statement (E2). For any �xed � > 0 if 0 < � � 1=(2), thenW � (D + �I)��f


2
� kWkq

(D + �I)��f

p

provided 1=2 = 1=p+1=q. The condition 2 � p < 2=(1�2�) is equivalent to
1=(�) < q � 1. We apply the statement (E1) to get the desired conclusion.
The case � > 1=(2) is similar,W � (D + �I)��f


2
� kWk2

(D + �I)��f

1 :

To prove compactness of the operator A =W � (D + �I)�� we choose a
sequence Wn 2 D such that Wn !W in Lq. Let �n be a strictly increasing
function such that �n(�) = �  for 0 � � � n and �n(�) � e� as � ! 1.
If we set An = Wn�(�n(D) + �I)�� then An ! A in the operator norm.
Since the set of compact operators is closed under norm limits, it is su¢ cient
to prove that each An is a Hilbert-Schmidt operator. Each operator An is
unitary equivalent to the integral operator cAn : bu ! dAnu which has the
kernel

cAn(�; �) =dWn(� � �)(�n(k�k) + �)�� :=dWn(� � �)G(�)

so that the Hilbert-Schmidt norm
cAnof the operator cAn iscAn = kWnk2 kGk2 <1:

Thus the operatorA =W � (D+�I)�� is compact and clearly its norm tend
to zero as �!1.

21



Let us turn to the proof of the claim 3.14. To prove the claim in the case
0 <  � 1 and p > 1= we writeW 1=2u

2
2
=
W 1=2 � (D + I)�1=2 � (D + I)1=2u

2
2

�
W 1=2 � (D + I)�1=2

2
L2!L2

(D + I)1=2u
2
2

=
W 1=2 � (D + I)�1=2

2
L2!L2

�
QL(u; u) + kuk22

�
� c

W 1=2
2
q

�
QL(u; u) + kuk22

�
� 1

2
QL(u; u) + c1 kuk22

provided " > 0 is chosen small enough and q = 2p > 2= as in the statement
(E2) with � = 1=2.
The case  > 1 is similar: The restriction p > 1= becomes p � 1:

We set Y = fjV j > �g and W = jV j 1Y . By Markov inequality m(Y ) �
��p kV kpp < 1 whence kWk1 = o(1) as � ! 1. In particular, W 1=2 2 L2

and
W 1=2


2
= o(1) as � ! 1. Applying the second part of the statement

(E2) with � = 1=2 and q = 2 we come to the conclusionW 1=2u
2
2
� c

W 1=2
2
2

�
QL(u; u) + kuk22

�
� 1

2
QL(u; u) + c1 kuk22 ;

as desired.
To prove that dom(H) = dom(D) we �rst write V = V 0 + V 00, where

V 0 2 Lp(X;m) and V 00 2 L1(X;m). The statement (E2) yields that

lim
�!1

V 0 � (D + �I)�1

L2!L2 = 0:

We also haveV 00 � (D + �I)�1

L2!L2 � kV

00k1
(D + �I)�1


L2!L2 = ��1 kV 00k1

for all � > 0, so
lim
t!1

V � (D + �I)�1

L2!L2 = 0:

For any 1 > � > 0 small enough we conclude that if � > 0 is chosen large
enough then

kV fk2 � � kDfk2 + �� kfk2
for all f 2 dom(D). Thus V is a relatively bounded perturbation of Dwith
a relative bound � < 1 whence dom(D + V ) = dom(D) by an application
of E. B. Davies [14, Theorem 1.4.2]. The proof is now completed.
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Remark 3.7 The number N := 2= is the so called spectral dimension
related to the operator D (remember that the topological dimension of the
state space Qp is zero). The value of the number N in our setting is similar
to the value of the topological dimension in the classical potential theory, e.g.
one can regard the estimates (E:1) and (E:2) as a version of the well known
estimates for the operator �� in the Eucledian space RN , see E. B. Davies
[14, Sec. 3.6]. One more example is the relation

p(t; x; x) � t�N=2 (3.15)

which holds for the heat kernel p(t; x; y) of the operator D, see equation
(2.15) and A. Bendikov, W. Cygan and W. Woess [8] for a more advanced
study of asymptotic relation (3.15).

3.3 The positive spectrum

We �nd crteria on its potential for a Schrödinger-type operator H = L + V
to have spectrum which is contained in the interval [0;1). We assume that
the potential V satisfy one of the hypotheses of Theorem 3.3 and Theorem
3.6) above. In particular, the quadratic form Q = QL + QV is a densely
de�ned closed bounded below quadratic form having D as a core, and H is
a bounded below self-adjoint operator associated with Q. Notice however
that even if Spec(H) is contained in the interval [0;1), the form Q is not a
Dirichlet form unless V � 0.
In what follows we use the notion �(u; v) for the square of gradient de�ned

as follows: for all u; v 2 D we set

�(u; v) :=
1

2
fuLv + vLu� L(uv)g : (3.16)

Let J(x � y) be the jump kernel associated with the (non-local) hierarhical
Laplacian L, see equations (2.17) and (2.19). It is straightforward to show
that the following identities hold true:

�(u; v)(x) =
1

2

Z
X

(u(y)� u(x)) (v(y)� v(x)) J(x� y)dm(y); (3.17)

QL(u; v) =

Z
X

�(u; v)dm; (3.18)

QL(uv; w) =

Z
X

v�(u;w)dm+

Z
X

u�(v; w)dm; (3.19)
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Z
X

v�(u2; w)dm� 2
Z
X

vu�(u;w)dm (3.20)

=
1

2

Z
X�X

(u(y)� u(x))2 (w(y)� w(x)) (v(y)� v(x)) J(x� y)dm(x)dm(y):

In particular, we haveZ
X

w�(u2; w)dm� 2
Z
X

wu�(u;w)dm (3.21)

=
1

2

Z
X�X

(u(y)� u(x))2 (w(y)� w(x))2 J(x� y)dm(x)dm(y) � 0:

The identities listed above can be extended to the set of all bounded functions
u; v and w from dom(QL). We refer to M. Fukushima [20, Sec. 5].
By the interpolation the operator L : D ! L2(X;m) can be extended

to each of the Banach spaces C1(X) and Lq(X;m); 1 � q < 1; as minus
Markov generator. To simplify our notation the extended operator we still
denote by L denoting if required its domain.

Theorem 3.8 Let H be a self-adjoint operator associated with the quadratc
formQ = QL+QV . Assume that there exists a function 0 < f 2 domC1(X)(L)
such that the inequality

V (x) � �Lf(x)
f (x)

holds m-almost everywhere. Then Spec(H) � [0;1):
Proof. Let us assume �rst that f is a locally constant function. Let us
put Wf := (�Lf)=f and let ' 2 D. If we put  := '=f 2 D, then using
equations (3.18)-(3.21) we get

Q('; ') =

Z
X

('L'+ V '2)dm �
Z
X

('L'+Wf'
2)dm

=

Z
X

( Lf � 2�(f;  ) + fL +Wff )f dm:

Since Lf+Wff = 0, the right-hand side of the inequality from above (shortly
RHS) can be written as

RHS =

Z
X

(�2 f�(f;  ) + f 2 L )dm

=

Z
X

�2 f�(f;  )dm+QL(f
2 ;  ):
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It follows that

Q('; ') �
Z
X

�2 f�(f;  )dm+QL(f
2 ;  )

=

Z
X

f�2 f�(f;  ) + f 2�( ;  ) +  �(f 2;  )gdm

and thus �nally, by (3.21),

Q('; ') �
Z
X

f 2�( ;  )dm+

Z
X

f�2 f�(f;  ) +  �(f 2;  )gdm

�
Z
X

f 2�( ;  )dm � 0:

We have already shown that Q('; ') � 0 for all ' 2 D. Since such functions
' form a core for Q, the result follows by an application of the variational
formula

E = inffQ('; ') : ' 2 D and k'k2 = 1g (3.22)

where E is the bottom of the spectrum of the operator H.
In general one can choose a sequence of locally constant functions fn such

that Wfn ! Wf locally uniformly in X. For instance, one can choose a �-
sequence �n 2 D+ and set fn := f � �n. Then setting  n := '=fn we get

Q('; ') =

Z
X

('L'+ V '2)dm �
Z
X

('L'+Wf'
2)dm

= lim
n!1

Z
X

('L'+Wfn'
2)dm � lim sup

n!1

Z
X

f 2n�( n;  n)dm � 0:

The proof of the theorem is �nished.

Corollary 3.9 Assume that 0 < � < 1 and that the following inequality

V�(x) �
�
�p

�
1 + �

2

��2
kxk��p

holds almost everywhere, then

Spec(D� + V ) � [0;1):

Proof. Let us set u�(x) := kxk�p . By V. S. Vladimirov [42, Sec. 8.1,
Eq. (1.6)], the function u� de�nes a distribution (a generalized function) in
D0 which is holomorphic on � everywhere on the real line. The operator
D� :  ! D� can be de�ned as convolution of distributions u���1=�p(��)
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and  ; see V. S. Vladimirov [42, Sec. IX]. We claim that in the sence of
distributions

D�u� =
�p(� + 1)

�p(� + 1� �)
u���; 8� 6= �: (3.23)

The case � = 0 is trivial. For � 6= 0 we apply the Fourier transform argument.
Remind that the Fourier transform f ! bf is a linear isomorphism ofD0 ! D0.
By virtue of the results of V. S. Vladimirov [42, Sec. VII.5], the equation

du�1(�) = �p()u�(�) (3.24)

holds true for all  6= 1. Applying equation (3.24) we obtain

[D�u�(�) = u�(�) bu�(�) = u�(�)\u�+1�1(�)
= u�(�)�p(� + 1)u���1(�) = �p(� + 1)u�(1+���)(�)

=
�p(� + 1)

�p(� + 1� �)
�p(� + 1� �)u�(1+���)(�)

=
�p(� + 1)

�p(� + 1� �)
\u(1+���)�1(�) =

�p(� + 1)

�p(� + 1� �)
[u���(�);

so by the unicity theorem the desired result follows.
For � 2 D+ and � := (�� 1)=2 we de�ne the following function

W� :=
�p(� + 1)

�p(� + 1� �)

u��� � �
u� � �

=

�
�p

�
1 + �

2

��2 u� 1+�
2
� �

u� 1��
2
� �:

We claim that the function W� belongs to C1(X) and W� = D
�f=f where

0 < f = u� 1��
2
� � 2 domC1(X)(D

�):

Indeed, kxkp > kykp implies that kx� ykp = kxkp whence for any �xed ball
B which is centred at the neutral element and contains the set f� > 0g and
for any x such that kxkp > diam(B) we have

0 < u� 1��
2
� �(x) =

Z
B

�(y)

kx� yk
1��
2

p

dm(y) =
1

kxk
1��
2

p

Z
B

�dm: (3.25)

It follows that the functions u� 1��
2
� �, u� 1+�

2
� � and W� belong to C1(X):

In particular, applying equation (3.23) we get f 2 C1(X) and

D�f =

�
�p

�
1 + �

2

��2
u� 1+�

2
� � := F (3.26)
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in the sence of distributions. So by V. S. Vladimirov [42, Sec. IX.3]

f(x) = D��F (x) =
1

�p(�)

Z
F (y)

kx� yk1��p

dm(y): (3.27)

Finally, equations (3.27) and (3.25) show that f (being the Green potential of
the function F 2 C1(X)) belongs to C1(X)-domain of the operator D�. In
particular, equation (3.26) holds in the strong sence. Clearly W� = D

�f=f
and the proof of the claim is �nished.
Thus Theorem 3.8 is applicable and we conclude that

QW�
('; ') � QD�('; '); 8' 2 D:

Let us choose a sequence fBn : n = 1; 2; :::g of balls centred at the neutral
element 0 such that \1n=1Bn = f0g and set �n = 1Bn=m(Bn). Clearly �n�f !
f for any continuous function f , whence

W�n(x)! W (x) =

�
�p

�
1 + �

2

��2 u� 1+�
2
(x)

u� 1��
2
(x)

=

�
�p

�
1 + �

2

��2
kxk��p :

Applying now Fatou lemma we conclude: for all ' 2 D, the following in-
equality holds (a Qp-version of the classical Hardy inequality in RN)

QW ('; ') � QD�('; '):

It follows that for all ' 2 D,

�QV ('; ') � QV�('; ') � QW ('; ') � QD�('; ');

or equivalently,

Q('; ') := QD�('; ') +QV ('; ') � 0:

The set D forms a core for Q('; '), for reasongs which depend upon which
assumption we make on V , and the proof is completed by an application of
the variational formula (3.22).

3.4 The negative spectrum

Next we discuss several results giving information about the negative part
of the spectrum of the Schrödinger-type operator H = L + V . We consider
L = D acting in Lp(Qp;m) where m is the Haar measure.
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Theorem 3.10 Let L = D and let V 2 Lp(Qp;m) for some p > 1=. Then
the following propertes hold:
1. The operator H = L+V has essential spectrum equals to the spectrum

of the operator L.
2. In particular, if H has any negative spectrum, then it consists of a

sequence of negative eigenvalues of �nite multiplicity. If this sequence is
in�nite then it converges to zero.
3. Suppose that there exists an open set U � X on which V is negative.

If E� is the bottom of the spectrum of the operator H� = L+�V , then E� � 0
for all � � 0 and lim�!1E� = �1.

Proof. 1. By Theorem 3.6, if c > 0 is large enough then the operator H+cI
is non-negative and

1

2

(L+ cI)1=2u

2
�
(H + cI)1=2u


2
� 3

2

(L+ cI)1=2u

2

(3.28)

for all u 2 dom(QL). Let us de�ne � := (L+ cI)�1 � (H + cI)�1, then

� = (L+ cI)�1V (H + cI)�1 = ABCDE

where A = (L + cI)�1=2, B = (L + cI)�1=2 jV j1=2, C = sign(V ) � B�; D =
(L + cI)1=2(H + cI)�1=2 and E = (H + cI)�1=2. It is clear that A and
E are bounded operators in L2(Qp;m), B� and C are compact operators
in L2(Qp;m), see statement (E2) in the proof of Theorem 3.6, and D is
a bounded operator in L2(Qp;m) by equation (3.28). Thus, as a product
of compact and bounded operators, the di¤erence of two resolvents � is a
compact operator on L2. By the perturbation theory of linear operators,
H and L have the same essential spectrum, see e.g. T. Kato [24]. Since
Specess(L) = Spec(L) � [0;1[, any negative point in the spectrum of H
must be an isolated eigenvalue of �nite multiplicity. Any limit of negative
eigenvalues lies in the essential spectrum whence the only possible limit is
zero.
2. That E� � 0 for all � � 0 follows from the fact that f0g 2 Specess(L)

and that Specess(L + �V ) = Specess(L). To prove the second statement we
observe that D is a form core for QL +Q�V , whence

E� = inffQL(u; u) +Q�V (u; u) : u 2 D and kuk2 = 1g: (3.29)

Let us choose u 2 D having support in the set U , then as �!1 we get

E� � QL(u; u) +Q�V (u; u)

= QL(u; u)� �

Z
U

jV j juj2 dm! �1
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as it was claimed.
The following example shows that the crucial issue for the existence of

negative eigenvalues in Theorem 3.10 for all � > 0 is the rate at which the
potential V (x) converges to 0 as kxkp !1.

Example 3.11 Let 0 < � < 1 and H� = D
� � �V where

V (x) = (kxkp + 1)��

for some 0 < � < 1 and � > 0: We have:
1. If � � � then Theorem 3.10 and Corollary 3.9 are applicable and

there exists a positive threshold for the existence of negative eigenvalues of
H�.
2. If � > � then the number of negative eigenvalues of H� counted with

their multiplicity can be estimated as follows

Neg(H�) � c(�; �)�1=�:

Indeed, applying S. Molchanov and B. Vainberg [37, Theorem 2.1 and Remark
2.2], we obtain

Neg(H�) � c(�)

Z
Qp
(�V )1=�dm

= c(�)�1=�
Z
Qp

dm(x)

(kxkp + 1)�=�
= c(�; �)�1=�:

3. If 0 < � < � then the result is totally di¤erent.

Theorem 3.12 In the notation of Example 3.11 assume that 0 < � < �,
then H� has non-empty negative spectrum for all � > 0.

Proof. Let f := D��1B where B is a ball centred at the neutral element
which we will specify later. The function f belongs to dom(D�) and cal-
culations based on the spectral resolution formula and equation (2.12) show
that

D��1B=m(B) = D
��

X
T : B�T

fT =
X

T : B�T
D��fT

=
X

T : B�T

�
m(T 0)

p

��
fT =

X
T : B�T

m(T )�
�
1T

m(T )
� 1T 0

m(T 0)

�

= m(B)��1
X

T : B�T

�
m(T )

m(B)

���1�
1T �

1

p
1T 0

�
.
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In particular, W := (D�f)=f is given by

W =
1B

D��1B
=
p� p�
p� 1

1B
m(B)�

=
p� p�
p� 1

1B
diam(B)�

:

If � > 0 and 0 < � < �, there exists a ball B such that diam(B) is large
enough so that

W (x) <
�

(kxkp + 1)�
= �V (x)

for all x 2 Qp. Hence, as f belongs to dom(D�), we obtain

QH�(f; f) = QD�(f; f)�Q�V (f; f) < QD�(f; f)�QW (f; f)

= (D�f; f)� (W � f; f) = 0

and an application of the Rayleigh-Ritz formulae yields the desired result.

4 Green function estimates

As in the previous section we consider a Schrödinger-type operatorH = L+V
and show that under certain conditions the equation Hu = v has unique
solution u which can be represented in the form

u(x) =

Z
gH(x; y)v(y)dm(y):

The kernel gH(x; y) � 0 is a continuous locally bounded outside of the diago-
nal set f(x; y) : x = yg function. We call gH(x; y) the Green function de�ned
by the operator H = L+ V .
Our aim here is to compare the Green functions gH(x; y) and gL(x; y).

We provide our calculations assuming that L = D� and V (x) = b kxk��p for
0 < � < 1 and b � b�, where

b� := �f�p ((1 + �)=2)g2

is the critical value of the parameter b as will be explained in Theorem 4.1
below. We will prove, see Corollary 4.7 below, that for any b � b� there
exists unique ��1

2
� � < � such that

gH(x; y)

gD�(x; y)
�
 
kxkp
kykp

^
kykp
kxkp

!�
:4

4This relation must be compared with the Green function estimates for Schrödinger
operators on Riemanian manifolds, see [22]
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4.1 Preliminary results

Recall that the p-adic Gamma-function, see V. S. Vladimirov [42, Sec.VIII.2 ],
is de�ned as �p(z) = (1�pz�1)(1�p�z)�1. The function �p(z) is meromorphic
in the complex plane and satis�es the functional equation �p(z)�p(1�z) = 1:
For real � we regard the function h(x) = kxk�p as a distribution, see V.

S. Vladimirov [42]. For � 6= � equation (3.23) shows that (in the sence of
distributions)

Lh(x) =
�p(� + 1)

�p(� + 1� �)
kxk���p :

In particular, for � > � � 1 the distributions h(x) and Lh(x) are regular
(generated by locally integrable functions) and the function

V (x) := �Lh(x)
h(x)

= � �p(� + 1)

�p(� + 1� �)
kxk��p (4.1)

belongs to L1loc(X;m), so it de�nes a regular distribution as well.

Theorem 4.1 For �� 1 < � < � the following statements hold true:

1. For 0 < � < � the function V (x) is strictly positive and belongs to
L1loc(X;m), so H is a minus Markovian generator by Theorem 3.3.
Moreover, for any b > 0 there exists 0 < � < �; a solution of the
equation

� �p(� + 1)

�p(� + 1� �)
= b; (4.2)

such that V (x) = b kxk��p for this value of �.

2. For � � 1 < � < 0 the function V (x) is strictly negative, so H is not a
minus Markovian generator. However, for these values of �

V�(x) = �V (x) �
�
�p

�
1 + �

2

��2
kxk��p ;

so H is a non-negative de�nite operator by Corollary 3.9. Moreover,
for b� := �f�p ((1 + �)=2)g2 and for any 0 > b � b� there exist two
values of �; solutions of the equation (4.2), 1 < �1 � (� � 1)=2 and
(�� 1)=2 � �2 < 0, such that V (x) = b kxk��p for these values of �.

Proof. To prove the theorem we set # = � + (1� �)=2 and write

� �p(� + 1)

�p(� + 1� �)
= ��p

�
1 + �

2
+ #

�
�p

�
1 + �

2
� #

�
:= C�(#):
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The function C�(#) is even, continuous and increasing on each interval [0; (1+
�)=2[ and ](1 +�)=2;+1[. Using the very de�nition of the function �p(�) it
is straightforward to show that the following properties hold true:

1. C�(0) = �f�p ((1 + �)=2)g2; C�((1� �)=2) = 0;

2. C�((1 + �)=2� 0) = +1; C�((1 + �)=2 + 0) = �1;

3. C�(+1) = �p� < C�(0):

Clearly (1)-(3) imply the result. The proof of the theorem is �nished.

4.2 The time changed Dirichlet form

Let us choose in equation (4.1) the function h(x) = kxk�p with � satisfying
(� � 1)=2 < � < �. If we set V = (�Lh)=h and H = L + V then Theorem
4.1 applies, so H = L + V is a non-negative de�nite self-adjoint operator
acting in L2(X;m).
According to our choice h2 2 L1loc(X;m), so h

2 �m is a Radon measure,
in particular, the operator

Ug = hg : L2(X; h2 �m)! L2(X;m)

is an isometry. Consider a non-negative self-adjoint operator

H = U�1 �H � U : L2(X; h2 �m)! L2(X; h2 �m)

and de�ne the the following quadratic form

QH(u; u) =

�
(H1=2u;H1=2u); u 2 dom(H1=2)

+1; otherwize
:

As by de�nition QH = QL + QV and dom(QH) = dom(QL) \ dom(QV ) we
get the equation

QH(u; u) = QH(hu; hu) = QL(hu; hu) +QV (hu; hu)

=
1

2

Z
X

Z
X

(h(x)u(x)� h(y)u(y))2 J(x; y)dm(y)dm(x)

+

Z
X

V (x)u2(x)h2(x)dm(x)

where the kernel J(x; y) is given by

J(x; y) = � 1

�p(��)
1

kx� yk1+�p

: (4.3)

32



Theorem 4.2 Assume that (� � 1)=2 < � < �. Then D � dom(QH) and ,
8u 2 D the following equation holds

QH(u; u) =
1

2

Z
X�X

(u(x)� u(y))2 J(x; y)h(y)dm(y)h(x)dm(x): (4.4)

In particular, QH is a densly de�ned closed Markovian quadratic form in
L2(X; h2 �m),that is, QH is a Dirichlet form relative to L2(X; h2 �m)).

Proof. Let us prove that D � dom(QH). It is enough to show that QH(u; u)
is �nite for u = 1B, B 2 B. We have QH(u; u) = QL(hu; hu) + QV (hu; hu).
Since V (x) = b kxk��p we get for � > (�� 1)=2:

jQV (hu; hu)j = jbj
Z
B

kxk��+2�p dm(x) <1:

Let us assume �rst that 0 =2 B, then clearly hu 2 D: Since D � dom(L),

QL(hu; hu) = (Lhu; hu) <1:

Assume now that 0 2 B and set hB := h1B, then

QL(hu; hu) =
1

2

ZZ
(hB(x)� hB(y))

2 J(x; y)dm(x)dm(y)

=

ZZ
(x;y)2B�B: kxkp<kykp

(h(x)� h(y))2 J(x; y)dm(x)dm(y)

+

Z
B

h2(x)dm(x)

Z
Bc
J(x; y)dm(y):

The second term, call it II, is �nite. Indeed, we have

II =

Z
B

h2(x)dm(x)

Z
Bc
J(0; z)dm(z) <1:

Without loss of generality we may assume that diam(B) = 1. By the ul-
trametric inequality, kxkp < kykp implies that kx� ykp = kykp, so the �rst
term, call it I, can be estimated as follows:

I = � 1

�p(��)

1X
k=1

kX
l=1

Z
kxkp=p�k

dm(x)

Z
kykp=p�k+l

dm(y)
�
kxk�p � kyk

�
p

�2
kyk�(1+�)p

= � 1

�p(��)

�
1� 1

p

�2 1X
k=1

kX
l=1

p�kp�k+lp�(1+�)(�k+l)
�
p�k� � p(�k+l)�

�2
= � 1

�p(��)

�
1� 1

p

�2 1X
k=1

p�k(1��+2�)
kX
l=1

p�l�
�
1� pl�

�2
:
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That the term I is �nite for (� � 1)=2 < � < � follows by inspection.
Since the function u ! QH(u; u) is lower semi-continuous, equation (4.4) is
enough to prove for u = 1B where B is a ball such that 0 =2 B. In this
case the function hB = h1B belongs to D. Let us consider the distribution
f(x) = kxk�1p =�p(). According to V. S. Vladimirov [42, Section IX],
h(x) = �p(� + 1)f�+1 and �Lh = f�� � �p(� + 1)f�+1 whence

QV (hu; hu) =

Z
(�Lh)hBdm = ((�Lh) � hB) (0)

= �p(� + 1)((f�� � f�+1) � hB)(0)

= �p(� + 1)((f�+1 � (f�� � hB))(0) =
Z
h(�LhB)dm

= �
ZZ

(hB(x)� hB(y))h(x)J(x; y)dm(x)dm(y)

and by symmetry

QV (hu; hu) = �
ZZ

(hB(y)� hB(x))h(y)J(x; y)dm(x)dm(y)

= �1
2

ZZ
(hB(x)� hB(y))(h(x)� h(y))J(x; y)dm(x)dm(y):

Thus �nally we get
QV (hu; hu) = �QL(hu; h): (4.5)

On the other hand, for u as above,

QL(hu; hu) =
1

2

ZZ
(hB(x)� hB(y))

2J(x; y)dm(x)dm(y): (4.6)

Clearly equations (4.5) and (4.6) yield equation (4.4).
Thus, the quadratic formQH(u; u) =

H1=2u
2 is a densly de�ned, closed,

non-negative de�nite, and Markovian quadratic form in L2(X; h2 � m), i.e.
QH(u; u) is a Dirichlet form in L2(X; h2 �m) as claimed.

De�nition 4.3 A symmetric Markovian semigroup (Pt)t>0 in L2(X;�) is
called transient if its resolvent (G�)�>0 can be de�ned also for the value � =
0 as a self-adjoint (possibly unbounded) operator G0 =

R1
0
Ptdt such that

1K 2 dom(G0) for every compact set K � X.
A Dirichlet form Q(u; u) relative to L2(X;�) is called transient if the

associated symmetric Markovian semigroup (Pt)t>0 is transient.
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One can show that the formQ(u; u) is transient if and only if the following
condition holds: for every compact setK � X there exists a constant CK > 0
such that Z

X

juj d� � CK
p
Q(u; u); 8u 2 dom(Q) 5.

Theorem 4.4 In the setting of Theorem 4.2:

1. There exists a hierarhical Laplacian L, related to the (non-homogeneous)
ultrametric measure space (X; h �m), such that

QH(u; u) = QL(u; u); 8u 2 L2(X; h �m) \ L2(X; h2 �m):

2. In particular, D � dom(QL) is a core for QL (i.e. QL(u; u) is a regular
Dirichlet form relative to L2(X; h �m)).

3. The Dirichlet form QL is transient. 6

Proof. Consider the function

J(B) := � 1

�p(��)
1

m(B)1+�
; B 2 B,

de�ned on the set B of all open balls. Since in the p-adic metric m(B) =
diam(B) for any ball B, we get

J(x; y) = J(xf y)

where x f y is the minimal ball which contains x and y. Consider also the
Radon measure em = h �m. We claim that the following properties hold true:

(i) S � T =) J(S) > J(T ) and J(T )! 0 as T ! X.

(ii) e�(B) :=PS: B�S em(S) (J(S)� J(S 0)) <1 for any B 2 B:
5This condition of transience was �rst introduced by A. Beurling and J. Deny in the

unreplacable paper A. Beurling and J. Deny [12]. It is slightly more restrictive than the
de�nition of transience given in M. Fukushima [20, Section 1.5].

6The following counterpart of Theorem 4.4 is in order: Let XH and XL be the Hunt
processes associated with the Dirichlet forms QH and QL respectively. According to M.
Fukushima [20, Theorem 5.5.2 and Example 5.5.1] their paths are related by the random
time changeXH

t = XL
�t where �t = inffs > 0 : At > tg and At =

R t
0
h(XH

s )ds is the positive
continuous additive functional. It follows in particular, that the characteristic operators
of Dynkin for these processes are related by the equation (�Hu)(x) = (�Lu)(x)=h(x).
This fact we are going to use in the next sections to solve the equation Hu = v:
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(iii) e�(B)! +1 as B ! fxg for any x 2 X:

The property (i) is evident. To prove (ii) we write

e�(B) = � 1

�p(��)

�
1� 1

p1+�

� X
S: B�S

em(S)
m(S)1+�

= (p� � 1)
X

S: B�S

em(S)
m(S)1+�

:

Next, using the identityZ
f(kxkp)dm(x) =

�
1� 1

p

� 1X
=�1

f(p)p;

we obtain that if 0 2 S then

em(S) = p� 1
p� p��

m(S)1+�, (4.7)

so em(S)
m(S)1+�

=
p� 1
p� p��

1

m(S)���
: (4.8)

Clearly equality (4.8) implies (ii). On the other hand, for B 2 B(x) small
enough we have

e�(B) � (p� � 1) em(B)
m(B)1+�

> (p� � 1)m(B)��min
y2B

kyk�p (4.9)

and

min
y2B

kyk�p =
�

kxk�p if x 6= 0
(m(B)� if x = 0

; (4.10)

so (4.9) and (4.10) imply (iii).
According to A. Bendikov [3, Section 2], properties (i)� (iii) imply that

the operator

Lu(x) =
Z
(u(x)� u(y)) J(x; y)dem(y) (4.11)

is a hierarhical Laplacian in L2(X; em). In particular, D � dom(L) and for
u 2 D we have

QL(u; u) =
1

2

Z Z
(u(x)� u(y))2 J(x; y)dem(y)dem(x) = QH(u; u):
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That D is a core of QL follows from the fact that L, as a hierarchical Lapla-
cian, is essentially self-adjoint. Indeed, in this case (QL; dom(QL)) coinsides
with the minimal extension of (QL;D) which has D as a core.
The proof of the fact that the Markovian semigroup (e�tL)t>0 is transient,

i.e. that 1K belongs to dom(G0) for any compact set K, uses an ad hoc
argument and we postpone it to the next section (Theorem 4.5). Let us show
how to derive the Beurling-Deny condition of transience from the transience
of the semigroup (e�tL)t>0. For any u 2 dom(QL) we have juj 2 dom(QL)
and QL(juj; juj) � QL(u; u): Also v := G01K is in dom(L) and Lv = 1K
whence Z

K

juj dem = QL(juj; v)

�
p
QL(v; v)

p
QL(u; u):

Setting CK :=
p
QL(v; v) we get the desired result. The proof is �nished.

4.3 The Green function gL(x; y)

In what follows we assume that (��1)=2 < � < �. The Markovian resolvent
G� = (L+ �I)�1, � > 0, acts in Banach spaces C1(X) and Lp(X; em), whereem = h �m, as a bounded operator and admits the following representation

G�u(x) =

Z
gL(�; x; y)u(y)dem(y):

Here gL(�; x; y), the so called �-Green function, is a continuous function
taking �nite values outside the diagonal set. As a function of � it decreases,
so the limit (�nite or in�nite)

gL(x; y) := lim
�!0

gL(�; x; y)

exists. The function gL(x; y) is called the Green function of the operator L.

Theorem 4.5 The Green function gL(x; y) is a continuous function taking
�nite values o¤ the diagonal set (i.e. the Markovian semigroup (e�tL)t>0 is
transient). Moreover, the following relationship holds:

gL(x; y) �
kx� yk��1p�
kxkp _ kykp

�2� ; (4.12)

or equivalently

gL(x; y)

gL(x; y)
�
 

1

kxkp
^ 1

kykp

!2�
: (4.13)
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Proof. Let us equip X = Qp with the ultrametric d(x; y) = p�� kx� yk�p ,
intrinsic for the hierarchical Laplacian L, and de�ne the following variables

F (x;R) =

�Z 1

R

�
1

m(Br(x))

Z
Br(x)

hdm

�
dr

r2

��1
and ed(x; y) = F (x; d(x; y)): (4.14)

Since for each �xed x the function R ! F (x;R) is continuous, strictly in-
creasing, 0 at 0 and 1 at 1, ed(x; y) is an ultrametric on X. Let eB eR(x) be
a ed-ball of radius eR centred at x. Then eB eR(x) = BR(x) whenevereR = F (x;R):

Since L is a hierarchical Laplacian acting in L2(X;m) and d(x; y) is its in-
trinsic ultrametric, we have (see [5, equation (3.11)])

J(x; y) =

Z 1

d(x;y)

1

m(BR(x))

dR

R2
(4.15)

=

Z 1

ed(x;y)
1em( eB eR(x))

d eReR2 :
It follows that ed(x; y) is intrinsic ultrametric corresponding to the hierarchical
Laplacian L and eV (x; eR) := em( eB eR(x))

= em(BR(x)) = Z
BR(x)

hdm

is its volume-function. We claim thatem(BR(x))
m(BR(x))

�
�
m(BR(x))

� if d(0; x) � R
h(x) if d(0; x) > R

: (4.16)

Indeed, if d(0; x) � R then BR(x) = BR(0), so applying (4.7), we getem(BR(x))
m(BR(x))

=
1

m(BR(x))

Z
BR(x)

hdm

=
1

m(BR(0))

Z
BR(0)

hdm

=
p� 1
p� p��

m(BR(0))
� =

p� 1
p� p��

m(BR(x))
�:
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On the other hand, if d(0; x) > R then from y 2 BR(x) we get that d(y; 0) =
d(x; 0); so em(BR(x))

m(BR(x))
=

1

m(BR(x))

Z
BR(x)

h(y)dm(y)

=
1

m(BR(x))

Z
BR(x)

h(x)dm(y) = h(x):

Notice that asymptotic relationship (4.16) holds uniformly in x and R in the
sence that the corresponding two sided inequality contains constants which
do not depend on x and R.
In turn, (4.16) implies the following (uniform) asymptotic relationship:

eR = F (x;R) �
�
R=h(x) if R < d(0; x)

R
���
� if R � d(0; x)

(4.17)

Let us consider �rst the case d(0; x) � R. We haveZ 1

R

em(Br(x))
m(Br(x))

dr

r2
�
Z 1

R

m(Br(x))
� dr

r2

�
Z 1

R

r�(2�
�
�)dr � R�(1�

�
�);

so eR := F (x;R) � R1�
�
� :

In the case d(0; x) > R there exist constants C1; C2 > 0 such thatZ 1

R

em(Br(x))
m(Br(x))

dr

r2
=

Z d(0;x)

R

em(Br(x))
m(Br(x))

dr

r2
+

Z 1

d(0;x)

em(Br(x))
m(Br(x))

dr

r2

= C1d(0; x)
�
�

�
1

R
� 1

d(0; x)

�
+

C2

d(0; x)1�
�
�

� d(0; x)
�
�

R
� h(x)

R
;

so eR := F (x;R) � R

h(x)
:

Furthermore, asymptotic relationships (4.16) and (4.17) yield the following
(uniform) asymptotic relationshipeV (x; eR) = em(BR(x)) (4.18)

�
(
h(x)R

1
� if R < d(0; x)

R
1+�
� if R � d(0; x)

;
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or equivalently, we get

eV (x; eR) � ( h(x)1+
1
� eR 1

� if eR < ed(0; x)eR 1+�
��� if eR � ed(0; x) : (4.19)

1. Let us consider the case kx� ykp = kxkp _ kykp. Then clearly d(x; y) =
d(0; x) _ d(0; y), and similar equation holds in ed metric. If R � d(0; x) theneR := F (x;R) � R1�

�
� (4.20)

and eV (x; eR) � R
1+�
� � eR 1+�

��� ; (4.21)

Equation (4.21) implies the following two results:

1. Since � := 1+�
��� > 1, the function eR ! 1=eV (x; eR) is integrable at 1

for any �xed x, so the Markovian semigroup (e�tL)t>0 (equivalently,
the Dirichlet form QL) is transient (see A. Bendikov, A. Grigor�yan,
Ch. Pittet and W. Woess [5, Theorem 2.28]) as it has been stated in
Theorem 4.4.

2. The fact that eV (x; eR) � eR�, � > 1, for eR � ed(0; x), yield the following
asymptotic relationship

gL(x; y) =

1Z
ed(x;y)

d eReV (x; eR) � ed(x; y)eV (x; ed(x; y)) ; (4.22)

or equivalently, see equations (4.20) and (4.21),

gL(x; y) � kx� yk��1�2�p =
kx� yk��1p�
kxkp _ kykp

�2� (4.23)

provided kxkp � kx� ykp. Similarly, by symmetry, relationship (4.23) holds
provided kykp � kx� ykp. Thus �nally, the assumption kx� ykp = kxkp _
kykp implies (4.23), as it was claimed.
2. Let us consider the case kx� ykp < kxkp _ kykp. In this case we have:

kxkp = kykp and kx� ykp < kxkp, similar relations hold in d and ed metrics.
Having this in mind we write

gL(x; y) =

1Z
ed(x;y)

d eReV (x; eR) =
0B@

ed(0;x)Z
ed(x;y)

+

1Z
ed(0;x)

1CA d eReV (x; eR) = I + II:
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Since ed(0; x) � eR implies eV (x; eR) � eR 1+�
��� , we get

II �
ed(0; x)eV (x; ed(0; x)) � 1ed(0; x) 1��+2����

:

To estimate the �rst term we write

I =

ed(0;x)Z
ed(x;y)

d eReV (x; eR) � 1

h(x)1+
1
�

ed(0;x)Z
ed(x;y)

d eReR 1
�

and

1

h(x)1+
1
�

ed(0;x)Z
ed(x;y)

d eReR 1
�

=
1

h(x)1+
1
�

 
1ed(x; y) 1��1 � 1ed(0; x) 1��1

!

=
ed(x; y)1� 1

�

h(x)1+
1
�

0@1� ed(x; y)ed(0; x)
! 1

�
�1
1A :

Finally, since kxkp = kykp and kx� ykp < kxkp, we have

gL(x; y) = I + II

�
ed(x; y)1� 1

�

h(x)1+
1
�

0@1� ed(x; y)ed(0; x)
! 1

�
�1
1A+ 1ed(0; x) 1��+2����

=
ed(x; y)1� 1

�

h(x)1+
1
�

0@0@1� ed(x; y)ed(0; x)
! 1

�
�1
1A+ ed(x; y) 1��1h(x)1+ 1

�ed(0; x) 1��+2����

1A :

According to (4.20) h(x) � ed(0; x) �
��� whence

h(x)1+
1
�ed(0; x) 1��+2����

�
ed(0; x) �

��� (1+
1
�)ed(0; x) 1��+2����
� 1ed(0; x) 1��1

and thus, using (4.17), we get

gL(x; y) �
ed(x; y)1� 1

�

h(x)1+
1
�

�
�
d(x; y)

h(x)

�1� 1
� 1

h(x)1+
1
�

=
d(x; y)1�

1
�

h(x)2
�
kx� yk��1p

kxk2�p
=

kx� yk��1p�
kxkp _ kykp

�2� :
The proof of the theorem is �nished.

41



4.4 Solution of the equation Hu = v

Throughout this section we assume that (� � 1)=2 � � < � and that b and
� are related by equation (4.2). Then, by Theorem 4.1), the operator

H = D� + b kxk��p

is a self-adjoint and non-negative de�nite operator acting in L2(X;m).
Notice that b is an increasing continuous function of � which ful�ll the

whole range [b�;+1), where b� = �f�p ((1 + �)=2)g2. In particular, b ful�lls
the interval [b�; 0) as � runs through the interval [(� � 1)=2; 0) and b ful�lls
[0;+1) as � runs through the interval [0; �).

Theorem 4.6 The equation Hu = v has unique solution

u(x) =

Z
X

gH(x; y)v(y)dm(y),

where gH(x; y) is a continuous function given by

gH(x; y) = h(x)gL(x; y)h(y):

We call gH(x; y) the Green function of the operator H, or the fundamenthal
solution of the equation Hu = v.

Proof. We know that L : D ! L2(X; h � m) \ C1(X). Let us show that
L : D ! Lq(X;m), 81 � q � 1. It is enough to check this property for
 = 1B, the indicator of an open ball B. In this case there exists a constant
C > 0 such that as x!1 the following asymptotic relationship holds:

L (x) = �
Z
B

J(x; y)h(y)dm(y)

= � 1

�p(��)
1

kxk1+�p

Z
B

hdm � C

kxk1+�p

Clearly this relationship and the fact that L (x) is bounded proofs the claim.
In particular, L 2 L2(X;m) and therefore 1

h
L 2 L2(X; h2 �m) for any

 2 D. Having this in mind we do our computations for ';  2 D :

jQH(';  )j = jQL(';  )j = j(L ; ')L2(hm)j

=

�����
�
1

h
L ; '

�
L2(h2m)

����� �
1hL 


L2(h2m)

k'kL2(h2m) :
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The above estimate means that '! QH(';  ) is a bounded linear functional
in L2(X; h2 �m) for any  2 D. This fact, in turn, implies that D � dom(H)
and

H = 1

h
L ; 8 2 D: (4.24)

Let us consider the equation Hu = v for v 2 D. Since D � dom(H) we have

(Hu;  )L2(X;h2�m) = (u;H )L2(X;h2�m); 8 2 D:

Applying equation (4.24) we get

(Hu;  )L2(X;h2�m) =
�
u;
1

h
L 
�
L2(X;h2�m)

= (u;L )L2(X;h�m):

On the other hand, we have

(Hu;  )L2(X;h2�m) = (v;  )L2(X;h2�m) = (hv;  )L2(X;h�m):

Our calculations from above show that for Hölder conjugated (p; q) we have��(u;L )L2(X;h�m)�� = j(hv;  )L2(X;h�m)j � khvkLp(X;h�m) k kLq(X;h�m) :
It follows that if we choose 1 < p < 1+�

1�� , then  ! (u;L )L2(X;h�m) is a
bounded linear functional in Lq(X; h �m) provided q = p

p�1 , i.e.
1
2

�
1 + 1

�

�
<

q <1.
As (e�tL)t>0 is a continuous symmetric Markovian semigroup an applica-

tion of the Riesz-Thorin interpolation theorem shows that it can be extended
to all Lq(X; h�m) as a continuous contraction semigroup. Let Lq be its minus
in�nitesimal generator, then Lq extends L, and L�q = Lp.
All the above shows that umust belong to the set dom(Lp) and Lpu = hv.

The equation Lpu = hv has unique solution

u(x) =

Z
X

gL(x; y)(hv)(y)h(y)dm(y)

=

Z
X

gL(x; y)v(y)h
2(y)dm(y):

It follows that the operatorH acting in L2(X; h2 �m) admits a Green function
gH(x; y) and that gH(x; y) coincides with the function gL(x; y), the Green
function of the operator L acting in L2(X; h �m):

gH(x; y) = gL(x; y): (4.25)
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Finally, let us consider the equation Hu = v. Since H = U � H�U�1, we get
H(U�1u) = U�1v. It follows that

(U�1u)(x) =

Z
X

gH(x; y)(U
�1v)(y)h(y)2dm(y);

or equivalently

u(x) =

Z
X

h(x)gH(x; y)h(y)v(y)dm(y):

That means that equation Hu = v admits a fundamenthal solution

gH(x; y) := h(x)gH(x; y)h(y)

= h(x)gL(x; y)h(y);

thanks to (4.25). The proof of the theorem is �nished.

Corollary 4.7 The Green function gH(x; y) is a continuous function taking
�nite values o¤ the diagonal set. Moreover, the following relationship holds:

gH(x; y) �
kxk�p kx� yk��1p kyk�p�

kxkp _ kykp
�2� ; (4.26)

or equivalently,

gH(x; y)

gL(x; y)
�
 
kxkp
kykp

^
kykp
kxkp

!�
:

Proof. Follows directly from Theorem 4.5 and Theorem 4.6.
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